JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Entity Component Systems Usefulness,
Literature Review

Carson Webster

Abstract—Entity-Component-System (ECS) architecture is a relatively new software design pattern that has gained widespread
popularity in the gaming industry for its flexibility and performance benefits. ECS architecture favors composition over inheritance,
allowing for greater flexibility by defining an entity by its traits rather than using a fixed inheritance tree. This allows for seamless
changes during simulation, and makes ECS well-suited for co-simulation applications.

This paper reviews four recent studies that explore the application of ECS architecture in various fields beyond gaming, such as
co-simulation, energy service interfaces, interaction programming, and realtime interactive systems. These studies demonstrate the
potential benefits of using ECS architecture outside of gaming and highlight its applicability in diverse fields.

Index Terms—Entity Component Systems,

1 INTRODUCTION

NITY-Component-System (ECS) architecture is a rela-
Etively new software design pattern that has gained
widespread popularity in the gaming industry due to its
flexibility and performance benefits. ECS separates an ob-
ject’s data and behavior into two distinct components: en-
tities and components. An entity is an object in the game
world, while a component is an attribute or behavior of that
entity. This architecture provides a framework for managing
these entities and components, allowing for a more efficient
and organized development process.

ECS offers several advantages over other software de-
sign patterns. Firstly, ECS architecture allows for easy mod-
ification and extension of code, which is crucial for game
development where requirements are constantly changing.
Secondly, ECS offers better performance than other design
patterns due to its focus on data-oriented design, which
allows for better memory usage and cache locality. Thirdly,
ECS architecture favors composition over inheritance, al-
lowing for greater flexibility by defining an entity by its
traits rather than using a fixed inheritance tree.

The objectives of this paper are to provide an overview
of the ECS architecture, discuss its advantages over other
software design patterns, and highlight its use in game
development. Additionally, the paper aims to provide a
comprehensive literature review of ECS, and to discuss its
current state of development and future potential. The paper
is organized as follows: section II dives into the literature
review of entity component systems in practical applica-
tions, section III discusses the technical theory behind core
concepts of ECS and its implementation, and section IV
concludes the paper and summarizes the key findings.

1.1 Definition of Entity Component Systems (ECS) ar-
chitecture

Entity Component Systems are an architectural pattern used
in software development that separates an object’s data
representation (components) from its behavior (systems).
In ECS architecture, entities are the fundamental building

blocks that represent the game objects or entities in the game
world. Entities are composed of a collection of components
that store the data needed to define the entity’s properties
and characteristics.

Components in ECS architecture are responsible for rep-
resenting the data of an entity. Each component defines a
single aspect of the entity, such as its position, health, or
velocity. Systems, on the other hand, are responsible for
performing operations on components to implement the
behavior of entities. Systems operate on a set of components
that match a specific set of criteria, called an archetype. This
approach allows for efficient processing of large numbers of
entities with similar properties, making it particularly suited
for game development and simulation.

1.2 Advantages of ECS over other software design pat-
terns

One of the main advantages of using ECS over other
software design patterns is the improved scalability and
flexibility it offers. Traditional object-oriented programming
(OOP) approaches can become increasingly complex and
difficult to manage as a system grows and more features
are added. In contrast, ECS separates the data and behavior
of entities, allowing for easier modification and addition of
new features without the need to modify existing code. This
makes it easier to maintain and expand the system over
time, especially for large and complex applications.
Another advantage of ECS is the potential for improved
performance in certain types of applications. Since ECS
stores data in a contiguous block of memory, it can be
more cache-friendly and reduce memory fragmentation,
leading to faster access times and improved performance.
Additionally, ECS can facilitate parallel processing and mul-
tithreading, allowing for better use of modern hardware and
faster execution times. However, it should be noted that the
performance gains from ECS are not always guaranteed and
depend on the specific application and implementation.



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

1.3 Overview of the literature review

The literature review for this paper focuses on the use of
ECS in game development. It covers various aspects of
ECS, including its history, implementation, and best prac-
tices. The literature review also discusses the advantages
and disadvantages of ECS, as well as its impact on game
development.

1.4 Organization of the paper

The paper is organized as follows. Section II we dive into the
literature review of entity component systems in practical
applications. Section III discusses the technical theory be-
hind core concepts of ECS and it’s implementation. Section
IV concludes the paper and summarizes the key findings.

2 LITERATURE REVIEW
2.1 Search and Research Process

In order to gather relevant literature on the topic of entity
component systems (ECS), a search was conducted on Web
of Science, focusing on highly cited and referenced papers.
Four papers were selected based on their relevance to the
topic and the popularity of their cited works.

The first paper, authored by Hatledal et al. [1], presents
Vico, an ECS-based co-simulation framework. The second
paper, written by Lange et al. [2], discusses the use of wait-
free hash maps in the ECS pattern for realtime interactive
systems. Raffaillac and Huot [3] describe in their paper the
application of the ECS model to interaction programming.
Finally, Slay et al. [4] propose an application for an ECS
in an Energy Services Interface. These papers were chosen
because they provide a comprehensive overview of the ECS
architecture and its applications in different domains.

2.2 Analysis of the papers

2.2.1 Vico: An entity-component-system based co-
simulation framework

This paper presents a co-simulation framework called Vico,
built on the Entity-Component-System (ECS) architecture.
The framework supports the Functional Mock-up Inter-
face and System Structure and Parameterisation standards,
and allows for easy integration of various systems. Vico
is compared to four similar co-simulation frameworks by
simulating a quarter-truck system.

The ECS architecture employed by Vico allows for
greater flexibility through composition over inheritance.
Entities are defined by their traits, which can be changed
seamlessly during simulation. This architecture allows for
easy integration of physics engines, plotting, 3D visualiza-
tion, co-simulation masters, and other types of systems in a
modular way.

2.2.2 Wait-Free Hash Maps in the Entity-Component-
System Pattern for Realtime Interactive Systems

This paper explores the use of high-performance wait-free
hash maps for the system access of components within the
Entity-Component-System (ECS) pattern in Realtime Inter-
active Systems (RIS). The authors present centralized and
decentralized approaches for reducing the memory demand

2

of these memory-intensive wait-free hash maps, which can
lead to highly responsive, low-latency data access while
maintaining a consistent data state. Their implementation of
the new method in a current RIS shows that their approach
is able to efficiently reduce the memory usage of wait-
free hash maps by more than a factor of ten while still
maintaining high performance.

The authors derive best practices from their numerical
results for different use cases of wait-free hash map mem-
ory management in diverse RIS applications. This paper
expands on the ECS architecture by providing a solution
for efficient memory management in RIS applications that
require highly responsive, low-latency data access. The pre-
sented approaches can be integrated into existing ECS-based
architectures and can potentially enhance their performance
and memory usage.

2.2.3 Applying the Entity-Component-System Model to In-
teraction Programming

This paper proposes a new GUI framework based on
the Entity-Component-System (ECS) model for interaction
programming. The framework allows interactive elements
(Entities) to acquire any data (Components) and behaviors
are managed by continuously running processes (Systems)
which select entities based on the components they possess.
This approach enables the handling and reuse of behaviors
and allows for the global definition of interaction modalities
as a set of systems. The authors implement their approach in
an experimental toolkit called Polyphony and demonstrate
its use with a sample application. The paper provides a
detailed explanation of their interpretation of the ECS model
in the context of GUIs.

2.2.4 Proposed Application for an Entity Component Sys-
tem in an Energy Services Interface

This paper proposes the adoption of an Entity Component
System (ECS) framework to address the needs of an En-
ergy Service Interface (ESI). While ECSs have been well-
established in the video game industry for their perfor-
mance benefits, they have not been widely examined or
adopted outside of that industry. The paper examines the
needs of an ESI and provides an overview of open-source
ECS libraries, as well as preliminary performance results for
ECSs. Additionally, the traditional approach of fulfilling the
needs of an ESI with database architectures is explored.

By adopting an ECS framework, the paper argues that
the ESI can benefit from the flexibility and modularity pro-
vided by the ECS architecture. The paper highlights the po-
tential for ECSs to facilitate the creation and management of
complex systems, as well as improve performance through
data-oriented design. The paper concludes by discussing
the potential limitations and challenges of adopting an ECS
framework for an ESI, and suggests future directions for
research in this area.

2.3 Findings and commonalities

My review of the four papers on entity-component systems
highlights several commonalities and findings. All four pa-
pers propose using entity-component systems in different



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

applications to improve performance, flexibility, and modu-
larity.

In particular, the first paper introduces a co-simulation
framework built on an entity-component system architec-
ture, which allows for the seamless integration of various
systems into the framework. The second paper presents a
high-performance wait-free hash map for system access of
components in real-time interactive systems, which main-
tains a consistent data state while allowing for non-locking
read and write operations. The third paper introduces a GUI
framework based on the entity-component system model,
where behaviors are managed by continuously running pro-
cesses that select entities by the components they possess,
facilitating the handling and reuse of behaviors. Finally,
the fourth paper proposes adopting an entity-component
system framework to serve the needs of an Energy Service
Interface.

Despite the different applications and focuses of each
paper, there are several commonalities. Firstly, all four pa-
pers highlight the advantages of using an entity-component
system architecture, which allows for greater flexibility
and modularity compared to traditional inheritance-based
architectures. Secondly, all papers emphasize the impor-
tance of performance in their respective applications, with
each proposing solutions to improve performance using
entity-component systems. Finally, all papers demonstrate
the potential of entity-component systems to improve and
streamline various applications beyond just the video game
industry where it was first popularized.

Overall, the findings from this literature review suggest
that entity-component systems can be applied in various
domains beyond video games to improve performance and
increase flexibility and modularity.

2.4 Core concepts of ECS architecture

Entity Component System (ECS) is a software architecture
pattern that separates the representation of objects into
entities composed of independent components. The three
main concepts of ECS architecture are entities, components,
and systems.

2.4.1 Entities, components, and systems

Entities, components, and systems are the three core con-
cepts of ECS architecture. An entity is an object or a concept
that exists within the game world and can be manipulated
by the player or the game itself. In video games, an entity
can be a character, a weapon, a vehicle, or any other object
that has properties and behaviors. For example, in a racing
game, a car can be an entity with properties like speed,
acceleration, and handling.

Components are the building blocks of an entity and
represent the various properties or attributes of an entity.
Each component encapsulates a specific piece of data or
functionality. For example, in a platformer game, a char-
acter entity can have a sprite component for its graphical
representation, a physics component for its movement, and
an audio component for its sound effects.

Systems are the logic that governs the behavior of en-
tities. They are responsible for processing and updating
the components of entities based on certain conditions or

3

rules. For example, in a strategy game, an Al system can be
responsible for making decisions for the enemy units based
on the current game state. Another example is a collision
detection system that checks for collisions between entities
and updates their components accordingly.

In ECS architecture, entities are made up of components
and their behavior is controlled by systems. By separating
the entities, components, and systems into distinct modules,
ECS allows for greater flexibility and modularity in game
development.

2.4.2 Composition over inheritance

Composition over inheritance is a design principle that
favors the use of composition (i.e., building complex objects
by combining simpler ones) instead of inheritance (i.e.,
creating new classes by extending existing ones). In the
context of ECS architecture, composition is used to build
entities from components rather than inheriting properties
from a base class.

This principle promotes flexibility and modularity in
code, as it allows for the creation of entities with specific
functionalities by combining relevant components. For ex-
ample, a player entity in a game can be composed of a
position component, a sprite component, a physics compo-
nent, and an input component. Instead of inheriting all these
properties from a generic entity class, the player entity is
created by combining these specific components.

Composition also reduces coupling between classes,
making it easier to change or replace individual components
without affecting the rest of the system. This can improve
the overall maintainability and scalability of the codebase.
Additionally, composition enables the creation of entities
with dynamic properties, as components can be added
or removed during runtime based on the needs of the
game. Composition over inheritance is a design principle
that favors the use of composition (i.e., building complex
objects by combining simpler ones) instead of inheritance
(i.e., creating new classes by extending existing ones). In the
context of ECS architecture, composition is used to build
entities from components rather than inheriting properties
from a base class.

This principle promotes flexibility and modularity in
code, as it allows for the creation of entities with specific
functionalities by combining relevant components. For ex-
ample, a player entity in a game can be composed of a
position component, a sprite component, a physics compo-
nent, and an input component. Instead of inheriting all these
properties from a generic entity class, the player entity is
created by combining these specific components.

Composition also reduces coupling between classes,
making it easier to change or replace individual components
without affecting the rest of the system. This can improve
the overall maintainability and scalability of the codebase.
Additionally, composition enables the creation of entities
with dynamic properties, as components can be added or
removed during runtime based on the needs of the game.
Advantages of ECS architecture include improved perfor-
mance, scalability, and modularity. It also makes it easier to
implement new features and modify existing ones.



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

2.5
sign

Implementation of ECS architecture in software de-

2.5.1 Design patterns for ECS architecture

There are several design patterns that are commonly used in
ECS architecture, each with its own benefits and tradeoffs.
One such pattern is the Singleton pattern, which is often
used for managing global resources in the ECS. This pattern
involves creating a single instance of a class that provides
access to a shared resource, such as a renderer or an audio
system. Another common pattern is the Factory pattern,
which involves creating specialized classes that can create
and initialize entities or components.

Other patterns used in ECS architecture include the
Observer pattern, which is used for event-based communi-
cation between systems and components, and the Flyweight
pattern, which is used to reduce memory usage by sharing
common data between entities or components. The Deco-
rator pattern is also used to add additional functionality to
entities or components without modifying their underlying
implementation.

Choosing the right design pattern for a particular use
case can have a significant impact on the overall perfor-
mance and maintainability of an ECS-based system. It is
important to consider factors such as the size and complex-
ity of the system, the type of game being developed, and the
performance requirements when selecting a pattern.

2.5.2 Best practices for ECS implementation

When implementing ECS architecture, it is recommended to
keep systems and components as decoupled as possible to
avoid dependency issues. It is also important to keep the en-
tity framework lightweight, with only necessary data stored
in entities. Additionally, using an event-driven approach to
communication between systems can improve performance
and maintainability. Lastly, regularly testing and profiling
the system can help identify potential issues and improve
overall performance.

2.5.3 Tools and libraries for ECS development

Several tools and libraries are available for ECS develop-
ment, including Bevy, an open-source ECS game engine
built on Rust. Bevy provides a flexible and efficient way to
build games and other interactive applications using ECS
architecture. Other popular ECS libraries include Unity’s
Entity Component System (ECS), Artemis-odb, and Entit.

3 CONCLUSION

3.1 Summary of the main findings

In this paper, we provided an overview of entity component
systems (ECS) architecture, highlighting its advantages over
other software design patterns. We explored the core con-
cepts of ECS architecture, including entities, components,
and systems, and discussed the benefits of using compo-
sition over inheritance. We also examined the implemen-
tation of ECS architecture in software design, discussing
common design patterns, best practices for implementation,
and available tools and libraries.

4

3.2 Contributions of the paper to the field of software
design

This paper makes several contributions to the field of soft-
ware design. First, it provides a comprehensive overview of
ECS architecture, making it accessible to developers who
may be new to this approach. Second, it highlights the
advantages of ECS over other design patterns, demonstrat-
ing how it can lead to more modular, maintainable, and
scalable software. Finally, it provides practical guidance for
implementing ECS in software design, drawing on best
practices and available tools and libraries.

3.3 Limitations of the study and future research direc-
tions

While this paper provides a thorough overview of ECS
architecture and its implementation in software design,
there are some limitations to our study. First, we focused
primarily on the design and implementation aspects of ECS
and did not delve into performance considerations. Second,
we only examined a few available tools and libraries for
ECS development, and there may be others that could also
be useful.

Future research could explore these limitations in greater
detail, as well as investigate additional aspects of ECS
architecture and its use in software design. For example,
researchers could investigate the impact of ECS on software
performance and explore strategies for optimizing ECS-
based systems. Additionally, further research could examine
the use of ECS in specific application domains, such as
game development, to better understand its strengths and
limitations.

3.4 Final thoughts and recommendations

In conclusion, entity component systems offer a promising
approach to software design that can lead to more modular,
maintainable, and scalable code. By understanding the core
concepts of ECS architecture and following best practices
for implementation, developers can take advantage of the
benefits of this approach while avoiding common pitfalls.
We recommend that developers who are new to ECS explore
available tools and libraries, such as Bevy, and experiment
with different design patterns to find what works best for
their specific use cases. With further research and develop-
ment, ECS architecture could become an increasingly impor-
tant approach to software design in a variety of domains.

REFERENCES

[1] L. I. Hatledal, Y. Chu, A. Styve, and H. Zhang, “Vico: An entity-
component-system based co-simulation framework,” Simulation Mod-
elling Practice and Theory, vol. 108, p. 102243, 2021.

[2] P. Lange, R. Weller, and G. Zachmann, “Wait-free hash maps in the
entity-component-system pattern for Realtime Interactive Systems,” 2016
IEEE 9th Workshop on Software Engineering and Architectures for
Realtime Interactive Systems (SEARIS), 2016.

[3] T. Raffaillac and S. Huot, “Applying the entity-component-system
model to interaction programming,” Proceedings of the 30th Confer-
ence on 'Interaction Homme-Machine, 2018.

[4] T. Slay, G. B. Spitzer, and R. B. Bass, “Proposed application for an
entity component system in an Energy Services Interface,” 2022 IEEE
Conference on Technologies for Sustainability (SusTech), 2022.



